

Date Planned : / /	Daily Tutorial Sheet-10	Expected Duration : 90 Min	
Actual Date of Attempt : / /	Level-2	Exact Duration :	

116. In the given reaction, $2X(g) + Y(g) \rightleftharpoons 2Z(g) + 80 \text{ kcal}$,

Which combination of pressure and temperature will give the highest yield of Z at equilibrium?

- (A) 1000 atm and 200°C
- **(B)** 500 atm and 500°C
- (C) 1000 atm and 100°C
- **(D)** 500 atm and 100°C
- **117.** When pressure is applied to the equilibrium system ice and water. Which of the following phenomenon will happen?
 - (A) More ice will be formed
- **(B)** Water will evaporate
- **(C)** More water will be formed
- **(D)** Equilibrium will not be formed
- **118.** 3 moles of A and 4 moles of B are mixed together and allowed to come into equilibrium according to the following reaction.

$$3A(g) + 4B(g) \Longrightarrow 2C(g) + 3D(g)$$

When equilibrium is reached, there is 1 mole of C. The equilibrium extent of the reaction is :

(A) 1/4

(B) 1/3

(C) 1/2

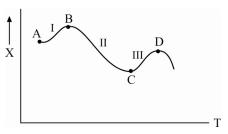
- **(D)** 1
- *119 In which of the following reactions, the system will shift towards forward reaction by adding inert gas at constant pressure?
 - (A) $PCl_5(g) \Longrightarrow PCl_3(g) + Cl_2(g)$
- **(B)** $N_2(g) + 3H_2(g) \implies 2NH_3(g)$
- (C) $COCl_2(g) \rightleftharpoons CO(g) + Cl_2(g)$
- (D) $CO(g) + 2H_2(g) \rightleftharpoons CH_3OH(g)$
- *120 Which of the following factors will increases the solubility of NH₃ gas in H₂O?

- **(A)** On decreasing temperature
- **(B)** On increasing temperature
- **(C)** on decreasing pressure
- **(D)** Solubility can not be increased
- 121. An aqueous solution of hydrogen sulphide shows the equilibrium : $H_2S \rightleftharpoons H^+ + HS^-$ If dilute hydrochloric acid is added to an aqueous solution of H_2S , without any change in temperature, the :
 - **(A)** The equilibrium constant change
 - **(B)** The concentration HS⁻ will increase
 - (C) The concentration of un-dissociated hydrogen sulphide will decrease
 - **(D)** The concentration of HS⁻ will decrease
- 122. The degree of dissociation of I_2 molecule at 1000°C and under 1.0 atmospheric pressure is 40% by volume. If the dissociation is reduced to 20% at the same temperature, the total equilibrium pressure on the gas will be:
 - (A) 1.57 atm

(B) 2.57 atm

(C) 3.57 atm

(D) 4.57 atm


For the following reaction through stages I, II and III 123.

$$A \xrightarrow{I} B \xrightarrow{II} C \xrightarrow{III} D$$

quantity of the product formed (x) varies with temperature (T) as given. Select correct statement:

- Stages I and III are endothermic but II is exothermic (A)
- Stages I and III are exothermic but II is endothermic **(B)**
- (C) Stages II and III are exothermic but I is endothermic
- **(D)** Stage I is exothermic but stages II and III are endothermic

124. $Au(s) \Longrightarrow Au(\ell)$

Above equilibrium is favoured at

- (A) High pressure low temperature
- (B) High pressure high temperature
- (C) Low pressure, high temperature
- (D) Low pressure, low temperature

*125. Match the following:

Condition for the reaction to be favoured in forward direction.

Column I		Column II	
(A)	$CO_2(g) + H_2O(\ell) \longrightarrow H_2CO_3(aq); \Delta H = -10 \text{ kJ/mol}$	(P)	Low temperature
(B)	$CO(g) + 2H_2(g) \longrightarrow CH_3OH(g); \Delta H = -91kJ / mol$	(Q)	High temperature
(C)	$N_2O_4(g) \rightleftharpoons 2NO_2(g); \Delta H = 57.2 \text{ kJ/mol}$	(R)	Low pressure
(D)	$N_2(g) + O_2(g) \longrightarrow 2 \text{ NO}(g); \Delta H = 90 \text{ kJ/mol}$	(S)	High pressure